Abstract:This study analyzes the multivariate, nonlinear, and strong coupling characteristics of permanent magnet synchronous motors (PMSM) in industrial applications, as well as the difficulties in their parameter adjustment, response delay, poor robustness, and adaptability issues encountered with traditional PID control. A novel approach combining a twin delayed deep deterministic policy gradient (TD3) algorithm with PID control is proposed to optimize PID parameter adjustment for more accurate motor speed control. In this method, bidirectional long short-term memory networks (BiLSTM) are integrated into the Actor and Critic networks, significantly enhancing the processing capability for time-series data of PMSM’s dynamic behavior. This enables the system to accurately capture the current state and predict future trends, achieving more precise and adaptive self-tuning of PID parameters. Moreover, the integration of entropy regularization and curiosity-driven exploration methods further enhances the diversity of the strategy, preventing premature convergence to suboptimal strategies and encouraging in-depth exploration of unknown environments. To validate the effectiveness of the proposed method, a simulation model of a PMSM is designed, and the proposed BiLSTM-TD3-ICE method is compared with the traditional TD3 and the classical Ziegler-Nichols (Z-N) method. The experimental results demonstrate the significant advantages of the proposed strategy in control performance.