Multimodal Sentiment Analysis Incorporating Modal Representation Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the context of current multi-modal emotion analysis in videos, the influence of modality representation learning on modality fusion and final classification results has not been adequately considered. To this end, this study proposes a multi-modal emotion analysis model that integrates cross-modal representation learning. Firstly, the study utilizes Bert and LSTM to extract internal information from text, audio, and visual modalities separately, followed by cross-modal representation learning to obtain more information-rich unimodal features. In the modal fusion stage, the study fuses the gating mechanism and improves the traditional Transformer fusion mechanism to control the information flow more accurately. Experimental results on the publicly available CMU-MOSI and CMU-MOSEI datasets demonstrate that the accuracy and F1 score of this model are improved compared with the traditional models, validating the effectiveness of this model.

    Reference
    Related
    Cited by
Get Citation

刘若尘,冯广,罗良语,林浩泽.结合模态表征学习的多模态情感分析.计算机系统应用,2024,33(5):280-287

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 21,2023
  • Revised:December 22,2023
  • Adopted:
  • Online: March 15,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063