Adaptive Human Body Topology Guidance for Gait Recognition
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Unlike appearance-based methods whose input may bring in some background noises, skeleton-based gait representation methods take key joints as input, which can neglect the noise interference. Meanwhile, most of the skeleton-based representation methods ignore the significance of the prior knowledge of human body structure or tend to focus on the local features. This study proposes a skeleton-based gait recognition framework, GaitBody, to capture more distinctive features from the gait sequences. Firstly, the study leverages a temporal multi-scale convolution module with a large kernel size to learn the multi-granularity temporal information. Secondly, it introduces topology information of the human body into a self-attention mechanism to exploit the spatial representations. Moreover, to make full use of temporal information, the most salient temporal information is generated and introduced into the self-attention mechanism. Experiments on the CASIA-B and OUMVLP-Pose datasets show that the method achieves state-of-the-art performance in skeleton-based gait recognition, and ablation studies show the effectiveness of the proposed modules.

    Reference
    Related
    Cited by
Get Citation

徐颖,朱明.基于自适应人体拓扑结构引导的步态识别.计算机系统应用,2024,33(5):187-194

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 08,2023
  • Revised:December 11,2023
  • Adopted:
  • Online: March 15,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063