Computating Offloading Based on Improved Whale Optimization Algorithm in IoV
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As the resources of edge servers are limited, how to design a reasonable resource management and task scheduling scheme is important research. To improve the utility of system services, this study proposes the strategy of joint resource allocation and computing offloading. Firstly, the optimal matching of communication and computing resources is obtained by binary search and the Lagrange multiplier method. Then, the offloading decision is made based on the whale optimization algorithm integrating with multiple strategies, including adjusting the convergence factor with a nonlinear change strategy of the exponential power, the adaptive weight strategy balancing the exploration and utilization stage, and the wandering strategy of the triangle and Levy flight. Besides, the study introduces a penalty function in fitness evaluation to satisfy the constraint of user access. Finally, it formulates a V-shaped transfer function to make binary offloading decisions. The simulation results show that in various indicator evaluations with other benchmark schemes, the proposed strategy can effectively increase network throughput and significantly improve system utility.

    Reference
    Related
    Cited by
Get Citation

赵振博,任雪容,付青坤.改进鲸鱼优化算法的车联网计算卸载.计算机系统应用,2024,33(4):123-132

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 24,2023
  • Revised:October 25,2023
  • Adopted:
  • Online: March 01,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063