Unstructured Scene Semantic Segmentation Combining Location Attention Mechanism and Lightweight STDC Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, unstructured road segmentation has become one of the important research directions in the field of computer vision. Most existing methods are suitable for structured road segmentation and cannot meet the accuracy and real-time requirements of unstructured road segmentation. To address the above issues, this study improves the short-term dense concatenate (STDC) network by introducing residual connections to better integrate multi-scale semantic information. Additionally, it proposes a position attention-aware spatial pyramid pooling (PA-ASPP) module to enhance the network’s position awareness ability for specific regions such as roads. Experiments are conducted on two datasets, RUGD and RELLIS-3D, and the proposed method achieves a mean intersection over union (MIoU) of 50.78% and 49.96% on the test sets of the two datasets, respectively.

    Reference
    Related
    Cited by
Get Citation

陈晔,杨长春,杨森,王宇鹏,王彭.融合位置注意力机制与轻量化STDC网络的非结构化场景语义分割.计算机系统应用,2024,33(4):254-262

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 10,2023
  • Revised:November 09,2023
  • Adopted:
  • Online: March 01,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063