Abstract:At present, there are many small targets in UAV images and the background is complex, which makes it easy to cause a high error detection rate in target detection. To solve these problems, this study proposes a small target detection algorithm for high-order depth separable UAV images. Firstly, by combining the CSPNet structure and ConvMixer network, the study utilizes the deeply separable convolution kernel to obtain the gradient binding information and introduces a recursively gated convolution C3 module to improve the higher-order spatial interaction ability of the model and enhance the sensitivity of the network to small targets. Secondly, the detection head adopts two heads to decouple and respectively outputs the feature map classification and position information, accelerating the model convergence speed. Finally, the border loss function EIoU is leveraged to improve the accuracy of the detection frame. The experimental results on the VisDrone2019 data set show that the detection accuracy of the model reaches 35.1%, and the missing and false detection rates of the model are significantly reduced, which can be effectively applied to the small target detection task of UAV images. The model generalization ability is tested on the DOTA 1.0 dataset and the HRSID dataset, and the experimental results show that the model has good robustness.