Improved PBFT Consensus Algorithm for Internet of Things
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of the Internet of Things (IoT), efficient consensus algorithms are the key to applying blockchain technology to the IoT. This study proposes an improved PBFT consensus algorithm based on the binary K-means practical Byzantine fault tolerance algorithm (BK-PBFT) to address the issues of high communication times, lack of consideration for consensus power consumption, and high consensus latency in IoT scenarios. Firstly, it obtains the geographic coordinates of the nodes, calculates the comprehensive evaluation values of the nodes, and divides the nodes into a two-layer multi-center clustering cluster by the binary K-means algorithm. Then, PBFT consensus is performed on the blocks in the lower-level cluster and then in the upper-level cluster. Finally, the cluster validates and stores the blocks to complete the consensus. Additionally, this study proves that the algorithm can achieve the minimum number of communication times when nodes are evenly distributed in each cluster, and obtain the optimal cluster number under the least communication times. The analysis and simulation results show that the proposed algorithm can effectively reduce communication times, consensus power consumption, and consensus latency.

    Reference
    Related
    Cited by
Get Citation

叶博文,贾小林,顾娅军.面向物联网的改进PBFT共识算法.计算机系统应用,2024,33(4):179-186

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2023
  • Revised:October 09,2023
  • Adopted:
  • Online: January 30,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063