Multimodal Ship Trajectory Prediction Based on S-Transformer
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Ship trajectory prediction is the premise and basis of realizing intelligent ship navigation. At present, most studies on ship trajectory prediction only rely on historical data of the automatic identification system (AIS), without using other sensor information on the ship. This study proposes a multi-modal trajectory prediction model S-Transformer. In this network, the seawater/land in the electronic chart is segmented as an auxiliary training target and integrated with the real Zhoushan port AIS data to train the model. In addition, the future ship sailing trajectory is predicted. The study also introduces Segment Recurrence to capture long-term dependencies of AIS data. The experimental results show that the S-Transformer has excellent prediction results in different ship-traveling situations and outperforms the unimodal benchmark model for related prediction tasks.

    Reference
    Related
    Cited by
Get Citation

柯研,陈姚节.基于S-Transformer的多模态船舶轨迹预测.计算机系统应用,2024,33(3):273-280

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 25,2023
  • Revised:October 25,2023
  • Online: January 19,2024
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063