Sentiment Triple Extraction Combining Grammatical Structure and Semantic Information
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Most of the current aspect sentiment triplet extraction methods do not fully consider syntactic structure and semantic relevance. This study proposes an aspect sentiment triplet extraction model that combines syntactic structure and semantic information. First, the study proposes to construct a grammatical graph with a dependency parser to get the probability matrices of all dependency arcs, extracting rich information of syntactic structure. Second, it utilizes the self-attention mechanism to construct a semantic graph, which represents the semantic correlation between words, thus reducing the interference of noisy words. Finally, a mutual affine transformation layer is designed to allow the model to better exchange the relevant features between the syntactic graph and semantic graph to improve the performance of the model in sentiment triplet extraction. The model is validated on several public datasets. The experiments show that compared with the existing sentiment triplet extraction models, the precision (P), recall (R), and F1 value are all improved. This validates the effectiveness of combining syntactic structure and semantic information in aspect sentiment triplet extraction.

    Reference
    Related
    Cited by
Get Citation

杨芳捷,冯广,唐业凯.结合语法结构和语义信息的情感三元组提取.计算机系统应用,2024,33(3):255-263

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 19,2023
  • Revised:October 20,2023
  • Online: January 18,2024
Article QR Code
You are the first992118Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063