Algorithm for Maximizing Algebraic Connectivity Based on Graph Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    As the number of agents increases, the number of potential communication links in a multi-agent system grows exponentially. Excessive redundant links lead to a significant waste of energy and maintenance costs for the system, while blindly removing links will reduce the stability and security of the system. Algebraic connectivity is one of the important metrics to measure the connectivity of a graph. However, traditional semidefinite programming (SDP) methods and heuristic algorithms for maximizing algebraic connectivity in large-scale scenarios are time-consuming. This study proposes a supervised graph neural network model to optimize the algebraic connectivity of multi-agent systems. The study applies the traditional SDP method in small-scale task scenarios, obtaining a sufficient amount of diverse training samples and labels. Based on this, it trains a graph neural network model that can be used in larger-scale task scenarios. The experimental results indicate that when removing 15 edges, the proposed model achieves an average performance of 98.39% of the traditional SDP method. In addition, the model has extremely limited computational time and can be extended to real-time scenarios.

    Reference
    Related
    Cited by
Get Citation

夏春燕,侯新民.基于图神经网络的最大化代数连通度算法.计算机系统应用,2024,33(3):146-157

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 19,2023
  • Revised:October 20,2023
  • Online: January 18,2024
Article QR Code
You are the first992118Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063