Survey on Relation Extraction Research Based on Graph Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In relation extraction tasks, building dependency trees or syntactic trees is usually adopted to obtain deeper and richer structural information. Graph neural network, as a powerful representation learning method for graph data structures, can better model such complex data structures. This study introduces a relation extraction method based on graph neural network, aiming to gain a deep understanding of the latest research progress and trends in this field. Firstly, it briefly introduces the classification and structure of relation graph neural networks and then elaborates on the core technology and application scenarios of relation extraction methods based on graph neural networks, including sentence-level and document-level methods, and joint entity-relation extraction methods. The advantages, disadvantages, and performance of each method are analyzed and compared, and possible future research directions and challenges are discussed.

    Reference
    Related
    Cited by
Get Citation

沈鑫怡,李华昱,闫阳,张智康.基于图神经网络的关系抽取研究综述.计算机系统应用,2024,33(3):1-11

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 14,2023
  • Revised:August 08,2023
  • Adopted:
  • Online: January 02,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063