Genetic Reinforcement Algorithm for Solving Pareto Optimal Solutions for Multi-objective Flow Shop Scheduling
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the Pareto optimal problem for multi-objective flow shop scheduling, this study builds a multi-objective flow shop scheduling problem model with maximum completion time and maximum delay time as the optimization objectives. Meanwhile, the study designs a genetic reinforcement learning algorithm based on Q-learning for the Pareto optimal solution of the problem. The algorithm introduces state variables and action variables and obtains the initial population by Q-learning algorithm to improve the initial solution quality. During the evolution of the algorithm, the Q-table is applied to guide the mutation operation to expand the local search range. The Pareto fast non-dominated sorting and congestion calculation are adopted to improve the solution quality and diversity, and the Pareto optimal solution is obtained step by step. The effectiveness of the improved genetic enhancement algorithm for the Pareto optimal solution of the multi-objective flow shop scheduling problem is verified by comparing the proposed algorithm with the genetic algorithm, NSGA-II algorithm, and Q-learning algorithm.

    Reference
    Related
    Cited by
Get Citation

刘宇,陈永灿,周艳平.求解多目标流水车间调度Pareto最优解的遗传强化算法.计算机系统应用,2024,33(2):239-245

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 23,2023
  • Revised:September 26,2023
  • Adopted:
  • Online: December 27,2023
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063