Patient Disease Typing Based on Time-aware LSTM Bidirectional Autoencoder
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the field of medicine, there are differences between patients with the same disease, and seemingly simple diseases may show different levels of complexity, which brings great challenges to patient identification, treatment, and prognosis. In this study, the electronic medical history stored in vertically unstructured time sequence is used to solve the heterogeneity of patients, enhance the acquisition of hidden information by seizing the characteristics of irregular medical treatment intervals, and capture the connection between current medical records and past and future information through forward and backward bidirectional learning, so as to deepen the level of feature extraction of original sequences and make the model make more accurate decisions. The BT-DST model proposed in this study?uses a time-aware LSTM unit to construct a bidirectional autoencoder to learn a strong single representation of a patient, which is then used in patient clustering to obtain the subtype of the patient for the current disease through statistical analysis. In addition, different types of therapeutic interventions can be applied to different populations, which provides precise medicine for different types of patients according to their health conditions.

    Reference
    Related
    Cited by
Get Citation

赵奎,李琦,高延军,马慧敏.基于Time-aware LSTM双向自动编码器的患者疾病分型.计算机系统应用,2024,33(2):166-175

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 04,2023
  • Revised:October 09,2023
  • Adopted:
  • Online: December 26,2023
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063