Liver Segmentation Based on Improved UNETR++
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of fat quantification standardization in liver MRI images, it is often necessary to manually sample the liver area of interest, but the manual sampling strategy is time-consuming and the results are variable. Compared with manually sketched regions of interest, the whole liver segmentation based on deep learning method has lower variability error and uncertainty, and better performance in fat quantitative analysis. To improve the segmentation performance during the whole liver segmentation task, this study makes improvements based on the UNETR++ model. This method combines the advantages of a convolutional neural network and Transformer structure and adds convolutional structure branches to supplement local features. Meanwhile, it introduces a gated attention mechanism to suppress irrelevant background information to make the model more prominent features of the segmented region. The improved method has better DCS and HD95 indexes than UNETR++ and other segmentation models.

    Reference
    Related
    Cited by
Get Citation

马力,王骏,梁羡和,郝金华.基于改进UNETR++的肝脏分割.计算机系统应用,2024,33(2):246-252

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2023
  • Revised:August 24,2023
  • Adopted:
  • Online: December 26,2023
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063