Adaptive Feature Fusion Image Dehazing Network Combined with Dense Attention
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    At present, most image dehazing algorithms ignore the local details of the image and fail to make full use of features at different levels, resulting in color distortion, contrast reduction, and haze residual phenomena in the restored image without fog. To solve this problem, this study proposes an adaptive feature fusion image dehazing network combined with dense attention. The network takes the encoder-decoder structure as the basic framework, and the feature enhancement part and the feature fusion part are embedded in the middle. The dense feature attention block composed of the dense residual network and the Channel-Spatial attention combination module is superimposed on the feature enhancement part. In this way, the network can pay attention to the local details of the image, enhance the reuse of features, and effectively prevent the disappearance of gradients. In the feature fusion part, an adaptive feature fusion module is constructed to fuse low-level and high-level features to prevent shallow feature degradation caused by the deepening of the network. The experimental results show that the proposed algorithm performs well on both synthetic and real fog image datasets. The peak signal-to-noise ratio and structural similarity on SOTS indoor synthetic datasets reach 35.81 dB and 0.9889, respectively, and those on the real image datasets O-HAZE reach 22.75 dB and 0.7788 respectively. The proposed algorithm effectively solves the problems of color distortion, contrast reduction, and haze residue.

    Reference
    Related
    Cited by
Get Citation

王燕,他雪,卢鹏屹.结合密集注意力的自适应特征融合图像去雾网络.计算机系统应用,2024,33(2):72-82

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 21,2023
  • Revised:September 26,2023
  • Adopted:
  • Online: December 25,2023
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063