Remote Sensing Land Cover Classification Based on Lightweight Semantic Segmentation Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    High-resolution remote sensing images have rich spatial features. To solve the problems of complex models, blurred boundaries, and multi-scale segmentation in remote sensing land cover methods, this study proposes a lightweight semantic segmentation network based on boundary and multi-scale information. First, the method uses a lightweight MobileNetV3 classifier and depthwise separable convolutions to reduce computation. Second, the method adopts top-down and bottom-up feature pyramid structures for multi-scale segmentation. Next, a boundary enhancement module is designed to provide rich boundary detail information for the segmentation task. Then, the method designs a feature fusion module to fuse boundary and multi-scale semantic features. Finally, the method applies cross-entropy and Dice loss functions to deal with the sample imbalance. The mean intersection over union of the WHDLD dataset reaches 59.64%, and the overall accuracy reaches 87.68%. The mean intersection over union of the DeepGlobe dataset reaches 70.42%, and the overall accuracy reaches 88.81%. The experimental results show that the model can quickly and effectively realize the land cover classification of remote sensing images.

    Reference
    Related
    Cited by
Get Citation

朱婉玲,贾渊.基于轻量语义分割网络的遥感土地覆盖分类.计算机系统应用,2024,33(2):134-142

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 12,2023
  • Revised:September 28,2023
  • Adopted:
  • Online: December 18,2023
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063