Excavator Detection and Working State Discrimination Based on Yolopose
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The surrounding areas of underground infrastructure such as optical cables and high-pressure oil and gas pipelines are vulnerable to brutal invasion by excavators. This study proposes an excavator detection and working state discrimination method combined with Yolopose and a multilayer perceptron. First, the Yolopose-ex extraction network based on Yolopose’s six-point posture of the excavator is designed. Secondly, the Yolopose-ex model is utilized to extract the change information of the excavator’s working posture in the video, and the working state feature vector (MSV) of the excavator is constructed. Finally, the multilayer perceptron (MLP) is adopted to analyze the working status of the excavator in the video. The experimental results show that the proposed method overcomes the problem of difficult discrimination of complex backgrounds, and the accuracy of the identification of the working state of the excavator reaches 96.6%, which has a high reasoning speed and generalization ability.

    Reference
    Related
    Cited by
Get Citation

黄健,赵小飞,王虎,胡其胜.基于Yolopose的挖掘机检测与工作状态识别.计算机系统应用,2024,33(2):299-307

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 12,2023
  • Revised:August 11,2023
  • Adopted:
  • Online: January 02,2024
  • Published: February 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063