Traffic Data Repair Technology Based on Parallel Dual-channel Spatio-temporal Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traffic data loss is common in network systems and is usually caused by sensor failure, transmission errors, and storage loss. The existing data repair methods cannot learn the multi-dimensional characteristics of traffic data. Therefore, this study proposes a dual-channel parallel architecture that combines bidirectional long short-term memory (LSTM) networks with multi-scale convolutional networks (ST-MFCN) for filling the missing values in traffic data. Meanwhile, a novel adversarial loss function is designed to further improve the prediction accuracy, which allows the model to effectively learn the temporal and dynamic spatial features of traffic data. Additionally, the model is tested on the Web traffic time series dataset and compared with the existing repair methods. Experimental results demonstrate that ST-MFCN can reduce data recovery errors and improve data repair accuracy, providing a robust and efficient solution for traffic data repair in network systems.

    Reference
    Related
    Cited by
Get Citation

陈清钰,张艳艳,赵伟毓.基于并行双通道时空网络的流量数据修复技术.计算机系统应用,2024,33(1):99-109

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2023
  • Revised:August 08,2023
  • Adopted:
  • Online: November 28,2023
  • Published: January 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063