Abstract:Self-supervised learning on RGB-D datasets has attracted extensive attention. However, most methods focus on global-level representation learning, which tends to lose local details that are crucial for recognizing the objects. The geometric consistency between image and depth in RGB-D data can be used as a clue to guide self-supervised feature learning for the RGB-D data. In this study, ArbRot is proposed, which can not only rotate the angle without restriction and generate multiple pseudo-labels for pretext tasks, but also establish the relationship between global and local context. The ArbRot can be jointly trained with contrastive learning methods for establishing a multi-modal, multiple pretext task self-supervised learning framework, so as to enforce feature consistency within image and depth views, thereby providing an effective initialization for RGB-D semantic segmentation. The experimental results on the datasets of SUN RGB-D and NYU Depth Dataset V2 show that the quality of feature representation obtained by multi-modal, arbitrary-orientation rotation self-supervised learning is better than the baseline models.