Brain Tumor Segmentation Algorithm Based on Cross-modal Fusion Dual Attention
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a cross-modal fusion dual attention net (CFDA-Net) for brain tumor image segmentation to solve the insufficient multi-modal information fusion of brain tumors and detail loss of the tumor regions. Based on the encoder-decoder architecture, a new convolutional block with dense blocks and large kernel attention parallel is first adopted in the encoder branch, which can effectively fuse global and local information and prevent the gradient vanishing during backpropagation. Secondly, a multi-modal deep fusion module is added to the left sides of the second, third, and fourth layers of the encoder to effectively utilize the complementary information among different modalities. Then, in the decoder branch, Shuffle Attention is adopted to group the feature maps and aggregate them, and the subfeatures of the group are divided into two parts to obtain important attention features of space and channels. Finally, binary cross entropy (BCE), Dice Loss, and L2 Loss are employed to form a new hybrid loss function, which alleviates the category imbalance of brain tumor data and further improves the segmentation performance. The experimental results on the BraTS2019 brain tumor dataset show that the average Dice coefficient values of the model in the whole tumor region, tumor core region, and tumor enhancement region are 0.887, 0.892, and 0.815 respectively. The proposed model has better segmentation performance in the core and enhanced regions of tumors than other advanced segmentation methods such as ADHDC-Net and SDS-MSA-Net.

    Reference
    Related
    Cited by
Get Citation

张鹏跃,马巧梅.跨模态融合的双注意力脑肿瘤分割算法.计算机系统应用,2024,33(1):119-126

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 13,2023
  • Revised:August 11,2023
  • Adopted:
  • Online: November 24,2023
  • Published: January 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063