Improved Dandelion Algorithm for Optimizing Multi-threshold Segmentation of Breast Cancer Images
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the context of complex structures and blurred cell boundaries in microscopic breast cancer histopathological images, traditional threshold-based segmentation faces challenges in accurately separating lesion areas of breast cancer images. To address this issue, this study proposes a multi-threshold segmentation method for breast cancer images based on the improved dandelion optimization algorithm (IDO). This method introduces the IDO to calculate the maximum inter-class variance (Otsu) as the objective function for finding the optimal thresholds. The IDO incorporates a defensive strategy to address the issue of unbounded search in the traditional dandelion optimization algorithm (DO) that extends beyond pixel ranges. Additionally, opposition-based learning (OBL) is introduced to prevent the algorithm from getting trapped in local optima. The experimental results indicate that compared with the Harris Hawks optimization (HHO), gorilla troop optimization (GTO), traditional DO, and marine predators algorithm (MPA), the IDO algorithm achieves the highest fitness value and fastest convergence under the same number of threshold levels. Moreover, it outperforms other comparative algorithms in terms of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) , and feature similarity index (FSIM).

    Reference
    [1] Kumar A, Singh SK, Saxena S, et al. Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer. Information Sciences, 2020, 508: 405–421.
    [2] Yang X, Wang R, Zhao D, et al. Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution. Biomedical Signal Processing and Control, 2023, 80: 104373.
    [3] 李雪梅, 曹琼, 曹慧敏, 等. 基于最大熵阈值分割法的颅脑CT图像血肿自动诊断系统研究. 中国医学装备, 2022, 19(8): 1–5.
    [4] 常君杰, 李东兴, 钟欣, 等. 改进乌鸦算法的二维Tsallis熵多阈值图像分割算法. 山东理工大学学报(自然科学版), 2021, 35(5): 21–26.
    [5] Lan K, Zhou JQ, Jiang XL, et al. Group theoretic particle swarm optimization for multi-level threshold lung cancer image segmentation. Quantitative Imaging in Medicine and Surgery, 2023, 13(3): 1312–1322.
    [6] 卢建宏, 刘海鹏, 王蒙. 改进海鸥算法的多阈值图像分割算法. 光电子·激光, 2022, 33(9): 932–939.
    [7] El Aziz MA, Ewees AA, Hassanien AE, et al. Multi-objective whale optimization algorithm for multilevel thresholding segmentation. Advances in Soft Computing and Machine Learning in Image Processing. Cham: Springer.
    [8] 郭松林, 巴艳坤. 改进的鲸鱼优化算法与图像阈值分割. 黑龙江科技大学学报, 2022, 32(5): 672–678.
    [9] Wang JY, Zhu LK, Wu BW, et al. Forestry canopy image segmentation based on improved tuna swarm optimization. Forests, 2022, 13(11): 1746.
    [10] Vijh S, Saraswat M, Kumar S. Automatic multilevel image thresholding segmentation using hybrid bio-inspired algorithm and artificial neural network for histopathology images. Multimedia Tools and Applications, 2023, 82(4): 4979–5010.
    [11] Agrawal S, Panda R, Choudhury P, et al. Dominant color component and adaptive whale optimization algorithm for multilevel thresholding of color images. Knowledge-based Systems, 2022, 240: 108172.
    [12] Sharma A, Chaturvedi R, Bhargava A. A novel opposition based improved firefly algorithm for multilevel image segmentation. Multimedia Tools and Applications, 2022, 81(11): 15521–15544.
    [13] Xing ZK, He YG. Many-objective multilevel thresholding image segmentation for infrared images of power equipment with boost marine predators algorithm. Applied Soft Computing, 2021, 113: 107905.
    [14] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66.
    [15] 余扬. 基于二维Otsu的舰船目标图像分割方法. 舰船电子工程, 2022, 42(1): 36–39.
    [16] 张永刚. 基于小波变换的医学影像图像阈值分割实现设计. 贵州大学学报(自然科学版), 2021, 38(2): 37–39, 43.
    [17] 李晓峰, 焦洪双, 李东. 基于量子蚁群算法的医疗图像阈值分割算法. 沈阳大学学报(自然科学版), 2020, 32(6): 490–495, 522.
    [18] Upadhyay P, Chhabra JK. Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Applied Soft Computing, 2020, 97: 105522.
    [19] Yu XB, Xu WY, Li CL. Opposition-based learning grey wolf optimizer for global optimization. Knowledge-based Systems, 2021, 226: 107139.
    [20] Houssein EH, Abdelkareem DA, Emam MM, et al. An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Computers in Biology and Medicine, 2022, 149: 106075.
    [21] Xu W, Zhang RF, Chen L. An improved crow search algorithm based on oppositional forgetting learning. Applied Intelligence, 2022, 52(7): 7905–7921.
    [22] Oliva D, Esquivel-Torres S, Hinojosa S, et al. Opposition-based moth swarm algorithm. Expert Systems with Applications, 2021, 184: 115481.
    [23] Zhao SJ, Zhang TR, Ma SL, et al. Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence, 2022, 114: 105075.
    [24] Elaziz MA, Ewees AA, Oliva D. Hyper-heuristic method for multilevel thresholding image segmentation. Expert Systems with Applications, 2020, 146: 113201.
    [25] 常君杰. 启发式算法在图像分割中的应用研究[硕士学位论文]. 淄博: 山东理工大学, 2021.
    [26] Heidari AA, Mirjalili S, Faris H, et al. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 2019, 97: 849–872.
    [27] Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 2021, 36(10): 5887–5958.
    [28] Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 2020, 152: 113377.
    [29] Bolhasani H, Amjadi E, Tabatabaeian M, et al. A histopathological image dataset for grading breast invasive ductal carcinomas. Informatics in Medicine Unlocked, 2020, 19: 100341.
    [30] 吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割. 系统工程与电子技术, 2021, 43(2): 318–327.
    [31] 刘俊梅, 马永刚. 基于新型混合智能算法的图像分割方法. 河南科学, 2022, 40(5): 709–713.
    [32] 王仕儒. 基于分数阶布谷鸟优化的Otsu图像分割算法研究[硕士学位论文]. 银川: 宁夏大学, 2022.
    [33] Tang KZ, Xiao X, Wu J, et al. An improved multilevel thresholding approach based modified bacterial foraging optimization. Applied Intelligence, 2017, 46(1): 214–226.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王正红,王丹,胡容俊.增强蒲公英算法优化乳腺癌图像多阈值分割.计算机系统应用,2024,33(1):148-156

Copy
Share
Article Metrics
  • Abstract:590
  • PDF: 1567
  • HTML: 1020
  • Cited by: 0
History
  • Received:June 18,2023
  • Revised:July 25,2023
  • Online: November 28,2023
  • Published: January 05,2023
Article QR Code
You are the first990394Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063