Autonomous Driving System of Intelligent Car Based on Multimodal Brain Computer Interface
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In traditional control systems, people rely on employing devices such as handles and joysticks to achieve human-machine interaction with external devices, which is a challenge for patients with movement disorders. Meanwhile, brain-computer interface (BCI) technology can convert EEG into control commands for external devices through the brain loop, allowing these patients to directly control external devices by their brain’s “consciousness”. This study proposes an autonomous driving system of intelligent car based on multimodal BCI to integrate the subjects’ EEG, electro-oculography, and gyroscope signals to control the car. EEG is used for controlling the car speed, electrooculography for controlling the start and stop of the car, and gyroscope signals for controlling the car steering. Additionally, computer vision technology is combined to add autonomous driving function for the intelligent car, making control more intelligent. The experiments show that the average accuracy rate of ten subjects utilizing the system to control the car is 92.47%, with an average response time of 1.55 s and an average information transmission rate of 55.94 bit/min, which indicates the effectiveness and efficiency of the control system. Meanwhile, multiple comparative experiments for verification are set up to verify the car’s autonomous driving function. The experimental results show that compared with manual driving, although the autonomous driving system has disadvantages in controlling the car speed, it has better performance advantages in accuracy and stability. This proves that this system can provide better control experience for the disabled, and has broad application prospects in brain control and autonomous driving.

    Reference
    Related
    Cited by
Get Citation

班念铭,庹宏炜,雷凯云,龙浩彬,莫伟彬,郑铖杰,潘家辉.基于多模态脑机接口的智能小车自动驾驶系统.计算机系统应用,2023,32(12):63-73

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 14,2023
  • Revised:June 28,2023
  • Adopted:
  • Online: October 27,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063