Classic YOLO Series Target Detection Algorithms and Their Application in Breast Cancer Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    At present, breast cancer, with the highest annual incidence, has replaced lung cancer, and the target detection technology based on deep learning can automatically detect lesions on non-invasive imaging such as mammography X-ray, breast ultrasound, and breast magnetic resonance imaging (MRI), and it has become the preferred way for adjuvant diagnosis of breast cancer. You only look once (YOLO) series algorithms are object detection algorithms based on deep learning, and classical YOLO algorithms have certain advantages in speed and accuracy and are widely used in computer vision fields. The latest YOLO algorithm is the state of the art (SOTA) model in the field of computer vision, and how to use YOLO series algorithms to improve the speed and accuracy of breast cancer detection has become one of the focus of researchers. On this basis, this study introduces the principle of the classical YOLO series algorithms, sorts out the application status of the classical YOLO series algorithms in breast cancer image detection, summarizes the existing problems, and looks forward to the further application of the YOLO series algorithms in breast cancer detection.

    Reference
    Related
    Cited by
Get Citation

孙歆,王晓燕,刘静,黄贺瑄.经典YOLO系列目标检测算法及其在乳腺癌检测中的应用.计算机系统应用,2023,32(12):52-62

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 18,2023
  • Revised:July 19,2023
  • Adopted:
  • Online: October 25,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063