Single Model Dominant Federation Learning Based on Broad Network Architecture
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Federated learning is a distributed machine learning approach that enables model delivery and aggregation without compromising the privacy and security of local data. However, federated learning faces a major challenge: the large size of the models and the parameters that need to be communicated multiple times between the client and the server, bringing difficulties for small devices with insufficient communication capability. Therefore, this study set up the client and server to communicate with each other only once. Another challenge in federated learning is the data imbalance among different clients. The model aggregation for servers becomes inefficient in data imbalance. To overcome these challenges, the study proposes a lightweight federated learning framework that requires only one-shot communication between the client and the server. The framework also introduces an aggregation policy algorithm, FBL-LD. The algorithm selects the most reliable and dominant model from the client models in a one-shot communication and adjusts the weights of other models based on a validation set to achieve a generalized federated model. FBL-LD reduces the communication overhead and improves aggregation efficiency. Experimental results show that FBL-LD outperforms existing federated learning algorithms in terms of accuracy and robustness to data imbalance.

    Reference
    Related
    Cited by
Get Citation

文家宝,陈泯融.基于宽度网络架构的单模型主导联邦学习.计算机系统应用,2024,33(1):1-10

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 28,2023
  • Revised:July 27,2023
  • Adopted:
  • Online: November 24,2023
  • Published: January 05,2023
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063