Helpfulness Prediction of Online Reviews Using Multidimensional Ratings
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Helpfulness prediction task of online reviews is significant in the contemporary e-commerce environment. It aims to evaluate the helpfulness of online reviews and then highlight the reviews more helpful to future consumers, thereby improving the consumers’ efficiency in obtaining information. This study concentrates on the new multidimensional scoring system emerging on various online platforms in recent years, and tries to study the influence of aspect ratings given by users in the system on the helpfulness of online reviews. To accomplish the helpfulness prediction task, it puts forward a multi-level neural network model HORA that considers all three components of review texts, overall ratings, and aspect ratings, as well as their interconnections. The experimental results on two real-world datasets show that HORA outperforms the present baseline models in terms of MAE and RMSE and exhibits good robustness. This indicates the significance of aspect ratings for the helpfulness awareness of users’ online reviews.

    Reference
    Related
    Cited by
Get Citation

吴健健,李文畅,时宏伟.利用多维评分进行在线评论的有用性预测.计算机系统应用,2023,32(12):21-31

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 16,2023
  • Revised:July 19,2023
  • Adopted:
  • Online: October 20,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063