Label Noisy Image Classification Based on Contrastive Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Label noise can greatly reduce the performance of deep network models. To address this problem, this study proposes a contrastive learning-based label noisy image classification method. The method includes an adaptive threshold, contrastive learning module, and class prototype-based label denoising module. Firstly, the robust features of the image are extracted by maximizing the similarity between two augmented views of the same image using contrastive learning. Then, a novel adaptive threshold filtering training sample is used to dynamically adjust the threshold based on the learning status of each class during model training. Finally, a class prototype-based label denoising module is introduced to update pseudo-labels by calculating the similarity between sample feature vectors and prototype vectors, thus avoiding the influence of label noise. Comparative experiments are conducted on the publicly available datasets CIFAR-10 and CIFAR-100 and the real dataset ANIMAL10. The experimental results show that under the condition of artificially synthesized noise, the proposed method outperforms conventional methods. By updating pseudo-labels based on the similarity between the robust feature vector of the image and various prototype vectors, the negative impact of noisy labels is reduced, and the anti-noise ability of the model is improved to certain extent, verifying the effectiveness of the proposed model.

    Reference
    Related
    Cited by
Get Citation

李俊哲,曹国.基于对比学习的标签带噪图像分类.计算机系统应用,2023,32(12):104-111

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 21,2023
  • Revised:July 19,2023
  • Adopted:
  • Online: October 20,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063