Trajectory Prediction Based on Time-frequency Domain Information Fusion and Multi-scale Adversary
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Many studies apply Transformer to time series prediction tasks. However, compared with other time series, motion trajectory data has kinematic uncertainty without obvious periodicity. To reduce noise interference and enhance trend modeling, this study proposes a target trajectory prediction method based on time-frequency domain information fusion and multi-scale adversarial training based on Transformer architecture. The wavelet decomposition is embedded into the network model to realize the adaptive filtering in the time-frequency domain, and then time-domain attention is integrated to encode the long-term trend characteristics of the observed trajectory more effectively. Meanwhile, the study designs a full convolution discriminator to further improve the prediction accuracy by learning multi-scale short-term micro motion representation of the sequence through adversarial training. A trajectory prediction dataset DT including 2D ship trajectory and 3D aircraft trajectory is established as a benchmark, and comparative experiments with Transformer, LogTrans, Informer, and other models are conducted. Experiment results show that the proposed method is superior to other models in the tasks of medium and long-term trajectory prediction.

    Reference
    Related
    Cited by
Get Citation

施黄凯,王彩玲,刘华军.基于时频域信息融合和多尺度对抗的轨迹预测.计算机系统应用,2023,32(12):268-275

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2023
  • Revised:July 03,2023
  • Adopted:
  • Online: October 19,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063