Automatic Portrait Paper-cut Generation Based on Improved CycleGAN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the difficulty in manually designing portrait paper-cuts, this study employs the generative adversarial network (GAN) to generate high-quality portrait paper-cuts for the first time. Based on the artistic characteristics of portrait paper-cuts, an improved network based on CycleGAN is proposed. 1) The CBAM attention module is introduced into the CycleGAN generator to enhance the feature extraction of the network. 2) The local discriminator for key facial regions such as nose, eyes, and lips is introduced to improve the generation effect of the above areas in generated portrait paper-cuts. 3) A new loss function is designed based on image edge information and SSIM, which will be adopted to replace the original forward cycle-consistency loss of CycleGAN and eliminate the shadows in the portrait paper-cuts. Compared with other automatic generation methods of portrait paper-cuts, the proposed method can quickly generate paper-cuts featuring high similarity to the original human face, continuous and smooth lines, and aesthetic beauty. Additionally, this study also puts forward a post-processing method of portrait paper-cut connectivity to make the obtained results more consistent with the overall connectivity of traditional Chinese paper-cuts.

    Reference
    Related
    Cited by
Get Citation

牟玮,童晶,韦剑,张明懿.基于改进CycleGAN的人脸剪纸自动生成.计算机系统应用,2023,32(12):1-11

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 17,2023
  • Revised:June 26,2023
  • Adopted:
  • Online: October 25,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063