Jump Rope Detection and Counting Algorithm Based on Lightweight Pose Estimation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the low feasibility of human pose estimation algorithms and low accuracy of jump rope counting based on pose estimation, this study proposes a jump rope counting algorithm based on a lightweight human pose estimation network. The algorithm first inputs a jump rope video, then extracts keyframe images by inter-frame difference method, and feeds them into the human pose estimation network for key joint point detection. To improve the detection accuracy of the lightweight network, the study builds an optimized LitePose detection model, which employs adaptive perception decoding to optimize the decoding part in the model and reduce quantization errors. Furthermore, a Kalman filter is adopted to smooth and denoise the coordinate data, reducing coordinate jitter errors. Finally, jump rope counting is determined based on the changes in key-point coordinates. Experimental results demonstrate that, in the same image resolution and environmental conditions, the proposed algorithm employing the optimized LitePose-S network model does not increase the parameter size and computational complexity of the model but improves network detection accuracy by 0.7% compared with other comparison networks. Meanwhile, the average error rate of this algorithm in jump rope counting can reach a minimum of 1.00%. The algorithm effectively determines the takeoff and landing of the human body by the results of human pose estimation and yields counting results.

    Reference
    Related
    Cited by
Get Citation

陈泽海,吴君钦,林俊宇.基于轻量级姿态估计的跳绳检测计数算法.计算机系统应用,2023,32(12):152-160

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 15,2023
  • Revised:June 14,2023
  • Adopted:
  • Online: September 15,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063