Rock Microscopic Image Stitching Based on SR-SURF
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Rock microscopic image stitching is a key part of rock analysis and research. The rock microscopic images are large in number (hundreds of images) and rich in content and contain many similar and confusing areas, which result in low stitching efficiency and low alignment accuracy. In addition, the stitching of multiple images will result in error accumulation and misalignment. For this problem, a similar region-SURF (SR-SURF) method for rock microscopic image stitching is proposed. Firstly, similar regions are quickly extracted by using hash fingerprints. Secondly, feature points are detected in this region. Then the improved random sample consensus (RANSAC) algorithm is used to eliminate the wrong matching points. The misaligned image is corrected by the best matching template. Finally, the least squares method is introduced to eliminate the cumulative error caused by the cumulative multiplication of homography matrices. The experimental results show that the algorithm proposed in this study eliminates the cumulative error caused by multiple image stitching and solves the problem of stitching misalignment, which improves the stitching speed and alignment accuracy. It has high practical value and promotes the digital storage process of rock slices.

    Reference
    [1] 苏程, 朱孔阳. 岩石薄片图像智能分析研究进展. 矿物岩石地球化学通报, 2023, 42(1): 13-25
    [2] 王琼, 杨杰, 霍凤财, 等. 基于MobileViT的岩石薄片图像岩性识别方法研究. 地质通报, 2023, 23(2): 1-11
    [3] 刘向东, 王增祥. 关于新时代实物地质资料科普发展的思考——以自然资源实物地质资料中心为例. 地质论评, 2021, 67(1): 180-184
    [4] Lowe DG. Object recognition from local scale-invariant features. Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
    [5] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. [doi: 10.1023/B:VISI.0000029664.99615.94
    [6] Bay H, Tuytelaars T, van Gool L. SURF: Speeded up robust features. Proceedings of the 9th European Conference on Computer Vision. Graz: Springer, 2006. 404-417.
    [7] Li Y, Wang JL, Yao KN. Modified phase correlation algorithm for image registration based on pyramid. Alexandria Engineering Journal, 2022, 61(1): 709-718. [doi: 10.1016/j.aej.2021.05.004
    [8] 陈敏, 汤晓安. SIFT与SURF特征提取算法在图像匹配中的应用对比研究. 现代电子技术, 2018, 41(7): 41-44
    [9] 江智, 江德港, 黄子杰, 等. 基于IB-SURF算法的无人机图像拼接技术研究. 计算机工程与应用, 2023, 23(2): 1-10
    [10] Gao XQ, Yang F, Fan HR, et al. Remote sensing image S-type fusion/stitching via low-error matching strategy. Laser & Optoelectronics Progress, 2019, 56(21): 211005
    [11] 曹南, 蔡扬扬, 李旭洋, 等. 高分辨率遥感影像特征点自动化匹配方法研究. 地理空间信息, 2022, 20(11): 9-13
    [12] 张二磊, 马骏, 王晓田. 一种改进的SURF彩色遥感图像配准算法. 液晶与显示, 2017, 32(2): 144-152
    [13] 王森, 李俊瑶, 肖洋洋, 等. 基于SURF算法的现场概貌图像拼接技术分析. 电子技术, 2022, 51(5): 36-37
    [14] 徐全飞, 冯旗. 基于SURF和矩阵乘法的超大规模遥感图像亚像素配准算法研究. 红外技术, 2017, 39(1): 44-52
    [15] 柴政, 刘任任, 梁光明. 基于机械扫描与改进SURF的显微图像拼接算法. 计算机技术与发展, 2019, 29(11): 97-101
    [16] 霍德璐, 袁超, 李佳龙. 基于特征点相对位置的指纹图像感知哈希算法. 工业控制计算机, 2022, 35(3): 52-53, 85
    [17] 张鹏宇, 申亮, 黄晓涛, 等. 基于对称结构特征的探地雷达图像模板匹配算法. 地球物理学进展, 2022, 37(6): 2657-2666
    [18] 兰猗令, 康传利, 王宁, 等. 附加增值条件的移动最小二乘法的点云孔洞修补. 红外与激光工程, 2023, 52(2): 20220390
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

姜丽萍,熊淑华,员旭拓,何海波,滕奇志.基于SR-SURF的岩石显微图像拼接.计算机系统应用,2023,32(11):302-307

Copy
Share
Article Metrics
  • Abstract:528
  • PDF: 1232
  • HTML: 968
  • Cited by: 0
History
  • Received:April 21,2023
  • Revised:May 17,2023
  • Online: August 29,2023
Article QR Code
You are the first990576Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063