Improved PSO SVM Regression Model and Its Application in Temperature Prediction
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The temperature of Lanzhou City is a non-stationary sequence with typical characteristics of loud noise and instability. As the temperature changes greatly, the sequence gets unstable. In order to improve the prediction accuracy, strengthen the generalization ability, and reduce the sensitivity of parameter selection of support vector machine (SVM) in temperature prediction, in this study, the improved particle swarm optimization (IPSO) algorithm is proposed to optimize the temperature prediction model of SVM. Firstly, the adaptive inertia weight is introduced into the particle swarm optimization (PSO) algorithm to improve the global optimization ability and local development ability of the PSO algorithm. Secondly, the improved IPSO is used to optimize the penalty factor and kernel function parameter of the SVM, and the optimized model (IPSO-SVM) is applied to the temperature prediction. The actual data of Lanzhou ground observation station are taken as sample data, and Matlab experimental tools are used for training and prediction. The experimental results show that the IPSO-SVM model in this study has a stronger generalization ability and better fitting degree than back propagation (BP), SVM, GRID-SVM, GWO-SVM, ABC-SVM, and ACO-SVM. It can predict the change in temperatures more accurately, which further verifies the feasibility of this model in temperature prediction.

    Reference
    Related
    Cited by
Get Citation

刘洋,张鸿,徐娟,任余龙,唐建新.改进PSO的SVM回归模型及在气温预测中的应用.计算机系统应用,2023,32(9):203-210

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 20,2022
  • Revised:March 01,2023
  • Adopted:
  • Online: July 14,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063