Identification of Dust on Photovoltaic Panel Based on Improved ShuffleNetV2 Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Dust accumulation is one of the main factors of power loss of photovoltaic modules. In view of the characteristics of dust particles and the high cost of using scanning electron microscopy, this study proposes a scheme to identify dust on photovoltaic panels by using the improved ShuffleNetV2 model. On the basis of the ShuffleNetV2 network model, the Mish activation function is used to integrate the better feature information into the neural network; then the mixed depth convolution is used to ensure the richness of feature extraction. Finally, the coordinate attention mechanism module is used to replace the point-by-point convolution of the tail of the right branch of the basic unit in the ShuffleNetV2 model, so as to improve the accuracy and reduce the calculation amount. The experimental results show that the improved ShuffleNetV2 model has higher accuracy and lower complexity than the existing classical model, which effectively proves that the proposed scheme is feasible.

    Reference
    Related
    Cited by
Get Citation

徐小平,张勇,刘广钧,刘龙.基于改进ShuffleNetV2模型的光伏板灰尘识别.计算机系统应用,2023,32(8):295-302

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 21,2022
  • Revised:February 13,2023
  • Adopted:
  • Online: June 09,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063