Chinese Word Segmentation of Self-attention Mechanisms Guided by Syntactic Dependence
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Based on previous work, this study proposes that the self-attention mechanism guided by syntactic dependency can integrate syntactic dependency knowledge to improve the performance of Chinese word segmentation so that the self-attention mechanism can only focus on those characters that have syntactic dependency influence on the current character’s word segmentation label and learn their influence degree on the current character. In addition, this study performs positional encoding on the self-attention mechanism guided by syntactic dependency trees. The experimental results show that the model has improved its performance compared with the baseline, and the recognition ability of the model for unregistered words has been strengthened.

    Reference
    Related
    Cited by
Get Citation

周保途.句法依存引导的自注意力机制的中文分词.计算机系统应用,2023,32(9):265-271

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 20,2023
  • Revised:March 22,2023
  • Adopted:
  • Online: June 09,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063