Multiple Birth Support Vector Machine Based on Hypersphere and ASSRFOA
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Support vector machine (SVM) is a machine learning method based on structural risk minimization and can solve classification problems. However, with the complexity of research problems, the real classification problems are often multi-classification ones, whereas SVM can only be adopted to deal with binary classification tasks. To this end, the multiple birth support vector machine (MBSVM) combined with the one-against-all strategy can realize multi-classification with low complexity, but the classification accuracy is low. This study improves MBSVM and proposes a new SVM multi-classification algorithm which is a multiple birth support vector machine based on the hypersphere and fruit fly optimization algorithm with adaptive step size reduction (ASSRFOA). The algorithm is referred to as HA-MBSVM. Through the information obtained from hypersphere fitting, firstly all classes are divided into several blocks and then classifiers are constructed for each class. The constraint distance regulation factor is introduced to properly improve the difference of the classifiers. At the same time, ASSRFOA is employed to solve the quadratic programming problems and HA-MBSVM can better solve the multi-classification problems. Six datasets are utilized to evaluate the performance of HA-MBSVM. The experimental results show that the overall performance of HA-MBSVM is better than that of the comparison algorithms.

    Reference
    [1] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 2020, 408: 189–215. [doi: 10.1016/j.neucom.2019.10.118
    [2] 张侠. 基于SVM和逻辑回归的糖尿病数据分析与研究. 沧州师范学院学报, 2023, 39(1): 19–23, 84. [doi: 10.13834/j.cnki.czsfxyxb.2023.01.018
    [3] 李邦凤, 付玉苹, 龚良庚, 等. CT影像组学结合支持向量机对偶发急性及陈旧性椎体压缩性骨折的鉴别诊断价值. 中国CT和MRI杂志, 2023, 21(2): 149–150, 174. [doi: 10.3969/j.issn.1672-5131.2023.02.050
    [4] 滕凯迪, 赵倩, 谭浩然, 等. 基于SVM-KNN算法的情绪脑电识别. 计算机系统应用, 2022, 31(2): 298–304. [doi: 10.15888/j.cnki.csa.008332
    [5] 韩伟, 韩士举, 魏延, 等. 支持向量机在消化系统疾病诊疗中的应用. 胃肠病学和肝病学杂志, 2022, 31(4): 454–458. [doi: 10.3969/j.issn.1006-5709.2022.04.021
    [6] 肖永茂, 鄢威, 龚青山. 模糊熵特征选择与SVM在三相异步电机故障诊断中的应用. 机械设计与制造, 2023, (3): 207–211. [doi: 10.19356/j.cnki.1001-3997.2023.03.010
    [7] 李燕飞, 李春光, 卜笛祺. SVM在机械液压传动系统故障预测中的应用研究. 自动化与仪器仪表, 2023, (2): 42–45. [doi: 10.14016/j.cnki.1001-9227.2023.02.042
    [8] 江勋林. 多目标支持向量机及其在少样本故障诊断中的应用. 计算机系统应用, 2022, 31(9): 287–293. [doi: 10.15888/j.cnki.csa.008716
    [9] 郝万亮, 边英杰, 申献芳, 等. 基于支持向量机回归的航空装备故障预测. 直升机技术, 2022, (4): 1–4, 9. [doi: 10.3969/j.issn.1673-1220.2022.04.001
    [10] 胡牡华. 支持向量机的舰船图像识别与分类技术. 舰船科学技术, 2022, 44(11): 156–159. [doi: 10.3404/j.issn.1672-7649.2022.11.032
    [11] 潘惠苹, 任艳, 徐春. 基于核典型相关分析和支持向量机的图像识别技术. 南京理工大学学报, 2022, 46(3): 284–290. [doi: 10.14177/j.cnki.32-1397n.2022.46.03.005
    [12] 吴晔, 李成辉, 姚骏. 基于支持向量机的眼底图像视盘定位算法. 工业控制计算机, 2023, 36(2): 98–99, 101. [doi: 10.3969/j.issn.1001-182X.2023.02.039
    [13] 张松兰. 支持向量机的算法及应用综述. 江苏理工学院学报, 2016, 22(2): 14–17, 21. [doi: 10.3969/j.issn.1674-8522.2016.02.004
    [14] 刘方园, 王水花, 张煜东. 支持向量机模型与应用综述. 计算机系统应用, 2018, 27(4): 1–9. [doi: 10.15888/j.cnki.csa.006273
    [15] Sheng WJ, Liu YT, Söffker D. A novel adaptive boosting algorithm with distance-based weighted least square support vector machine and filter factor for carbon fiber reinforced polymer multi-damage classification. Structural Health Monitoring, 2023, 22(2): 1273–1289. [doi: 10.1177/14759217221098173
    [16] Han SJ, Wang HR, Hu XY, et al. Research on tower mechanical fault classification method based on multiclass central segmentation hyperplane support vector machine improvement algorithm. Applied Sciences, 2023, 13(3): 1331. [doi: 10.3390/APP13031331
    [17] Clement D, Agu E, Suleiman MA, et al. Multi-class breast cancer histopathological image classification using multi-scale pooled image feature representation (MPIFR) and one-versus-one support vector machines. Applied Sciences, 2022, 13(1): 156. [doi: 10.3390/APP13010156
    [18] Li Q, Liu C, Guo QX. Support vector machine with robust low-rank learning for multi-label classification problems in the steelmaking process. Mathematics, 2022, 10(15): 2659. [doi: 10.3390/MATH10152659
    [19] Barman U, Choudhury RD. Soil texture classification using multi class support vector machine. Information Processing in Agriculture, 2020, 7(2): 318–332. [doi: 10.1016/j.inpa.2019.08.001
    [20] 王乃芯. 多分类支持向量机的研究[硕士学位论文]. 上海: 华东师范大学, 2020.
    [21] Angulo C, Parra X, Català A. K-SVCR. A support vector machine for multi-class classification. Neurocomputing, 2003, 55(1–2): 57–77.
    [22] Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905–910. [doi: 10.1109/TPAMI.2007.1068
    [23] Yang ZX, Shao YH, Zhang XS. Multiple birth support vector machine for multi-class classification. Neural Computing and Applications, 2013, 22(1): 153–161. [doi: 10.1007/s00521-012-1108-x
    [24] 丁世飞, 张健, 张谢锴, 等. 多分类孪生支持向量机研究进展. 软件学报, 2018, 29(1): 89–108. [doi: 10.13328/j.cnki.jos.005319
    [25] 王丽娜. 果蝇优化算法的改进研究[硕士学位论文]. 赣州: 江西理工大学, 2021.
    [26] 高栋. 群智能优化算法的改进研究[硕士学位论文]. 赣州: 江西理工大学, 2020.
    [27] 张水平, 王丽娜. 果蝇优化算法的进展研究分析. 计算机工程与应用, 2021, 57(6): 22–29. [doi: 10.3778/j.issn.1002-8331.2011-0174
    [28] 朱美琳, 刘向东, 陈世福. 用球结构的支持向量机解决多分类问题. 南京大学学报(自然科学), 2003, 39(2): 153–158. [doi: 10.3321/j.issn:0469-5097.2003.02.002
    [29] Mangasarian OL, Wild EW. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2006, 28(1): 69–74. [doi: 10.1109/TPAMI.2006.17
    [30] 王念, 张靖, 李博文, 等. 基于加权果蝇优化算法的多区域频率协同控制. 电力系统保护与控制, 2020, 48(11): 102–109. [doi: 10.19783/j.cnki.pspc.190864
    [31] 谢志强, 高丽, 杨静. 基于球结构的完全二叉树SVM多类分类算法. 计算机应用研究, 2008, 25(11): 3268–3270, 3274. [doi: 10.3969/j.issn.1001-3695.2008.11.019
    [32] 周广悦, 李克文, 刘文英, 等. 灰狼优化的混合参数多分类孪生支持向量机. 计算机科学与探索, 2020, 14(4): 628–636. [doi: 10.3778/j.issn.1673-9418.1905024
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

莫源乐,朱嘉静,刘勇国,张云,李巧勤.基于超球和ASSRFOA的多生支持向量机.计算机系统应用,2023,32(9):43-52

Copy
Share
Article Metrics
  • Abstract:695
  • PDF: 1432
  • HTML: 941
  • Cited by: 0
History
  • Received:February 13,2023
  • Revised:March 14,2023
  • Online: July 14,2023
Article QR Code
You are the first991206Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063