Facial Expression Recognition of Infants Based on MIFNet
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The intelligent recognition of infant facial expressions can help caregivers to better pay attention to the physical and mental health of infants. Due to the smooth facial lines and weak sharpness of facial features, the inter-class similarity of infants’ facial expressions is higher than that of adults. To address the problem of high inter-class similarity, this study proposes a multi-scale information fusion network. The network is divided into two stages as a whole. In the first stage, the fusion module is applied to fuse local features with global features in the dual dimensions of both spatial and channel domains to enhance the expression ability of features. In the second stage, the self-adaptive deep centre loss is employed to estimate the weights of fused features based on the attentional mechanism, thus guiding the center loss and promoting the intra-class compactness and inter-class separation of infant expression features. The experimental results show that the multi-scale information fusion network achieves a recognition accuracy of 95.46% in the infant facial expressions dataset, reaching 99.07%, 95.88%, and 95.89% in the three evaluation metrics of AUC, recall, and F1 score respectively. The recognition effectiveness is optimal compared with the existing facial expression recognition networks. The generalization experiments of the multi-scale information fusion network are conducted on the public facial expressions dataset, with an accuracy of 89.87%.

    Reference
    Related
    Cited by
Get Citation

耿磊,齐婷婷,张芳,肖志涛,李月龙.基于MIFNet的婴儿面部表情识别.计算机系统应用,2023,32(8):42-53

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 16,2023
  • Revised:February 13,2023
  • Adopted:
  • Online: June 09,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063