Abstract:An intelligent robot depalletizing system based on visual positioning is designed to solve the problem that the traditional teaching and playback robot can only perform depalletizing tasks with given positions and fixed trajectories and thus is limited to fixed scenes. The system uses the coordinate transformation of the target pixel center to obtain the corresponding world coordinates. For the problem that the eye-in-hand camera may lead to the inaccurate rotation angle of the target obtained by the image processing algorithm due to the deflection of the camera, it is proposed to use the extrinsic parameter coefficient of the camera to compensate for the rotation angle of the target. Moreover, a depalletization strategy is designed, and the communication guides the robot to automatically perform the depalletization task by grabbing from nearest to farthest without manual intervention. The experimental data shows that the system can grab the target with an unknown position in an unknown work scene, with a position error of 1.1 mm and an angle error of 1.2°, and the time to position the stacking layer is about 1.2 s. The system meets precision and efficiency requirements for depalletizing robots in the industrial scenes.