Abstract:Graph neural networks have achieved remarkable performance in semi-supervised node classification tasks. Relevant research has shown that graph neural networks are susceptible to perturbations, and there is research studying the adversarial robustness of graph neural networks. However, gradient-based attacks cannot guarantee optimal perturbation. Therefore, an adversarial attack method based on gradient and structure is proposed to enhance the gradient-based perturbation. The method first generates candidate perturbation sets by using first-order optimization of training losses, and then it evaluates the similarity of the candidate sets. Finally, it ranks them according to the evaluation results and selects a fixed-budget modification to achieve the attack. The proposed attack method is evaluated by performing a semi-supervised node classification task on five datasets. Experimental results show that the node classification accuracy decreases significantly when only a small number of perturbations are performed, which indicates that the proposed method significantly outperforms the existing attack methods.