Gradient-structure-based Adversarial Attacks on Graph Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Graph neural networks have achieved remarkable performance in semi-supervised node classification tasks. Relevant research has shown that graph neural networks are susceptible to perturbations, and there is research studying the adversarial robustness of graph neural networks. However, gradient-based attacks cannot guarantee optimal perturbation. Therefore, an adversarial attack method based on gradient and structure is proposed to enhance the gradient-based perturbation. The method first generates candidate perturbation sets by using first-order optimization of training losses, and then it evaluates the similarity of the candidate sets. Finally, it ranks them according to the evaluation results and selects a fixed-budget modification to achieve the attack. The proposed attack method is evaluated by performing a semi-supervised node classification task on five datasets. Experimental results show that the node classification accuracy decreases significantly when only a small number of perturbations are performed, which indicates that the proposed method significantly outperforms the existing attack methods.

    Reference
    Related
    Cited by
Get Citation

李凝书,关东海,袁伟伟.基于梯度结构的图神经网络对抗攻击.计算机系统应用,2023,32(7):276-283

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 17,2022
  • Revised:February 03,2023
  • Adopted:
  • Online: April 23,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063