Lightweight Strip Steel Defect Detection Based on Improved YOLOv5
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    For limited equipment resources in industrial scenarios, a lightweight strip steel defect detection model based on improved YOLOv5 is proposed. First, ShuffleNetv2 is used to replace the backbone feature extraction network to optimize model parameter amount and running speed; secondly, the lightweight up-sampling operator, namely content-aware reassembly of features (CARAFE) is used to further reduce parameters and calculation amount while increasing the receptive field. At the same time, the GSConv layer is introduced to balance the model accuracy and detection speed while ensuring semantic information. Finally, a cross-level feature fusion mechanism is designed to improve the detection accuracy of the network. The experimental results show that the mean average precision of the improved model is 78.5%, which is 1.4% higher than the original YOLOv5 algorithm. The calculation amount of the model is 10.9 GFLOPs; the parameter amount is 5.88×106; the calculation and parameter amounts are reduced by 31% and 15.4%, respectively; the detection speed is 49 f/s, which is increased by 3.5 f/s. Therefore, the improved model improves the detection accuracy and speed and greatly reduces the calculation and parameter amounts of the model, which can ensure the real-time detection of surface defects of strip steel.

    Reference
    [1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述. 中国图象图形学报, 2022, 27(6): 1697–1722. [doi: 10.11834/jig.220069
    [2] 吴平川, 路同浚, 王炎. 带钢表面自动检测系统研究现状与展望. 钢铁, 2000, 35(6): 70–75. [doi: 10.3321/j.issn:0449-749X.2000.06.018
    [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [4] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [5] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/TPAMI.2016.2577031
    [6] He KM, Gkioxari G, Dollár P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386–397. [doi: 10.1109/TPAMI.2018.2844175
    [7] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [8] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [9] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
    [10] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [11] Fu GZ, Sun PZ, Zhu WB, et al. A deep-learning-based approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering, 2019, 121: 397–405. [doi: 10.1016/j.optlaseng.2019.05.005
    [12] He D, Xu K, Zhou P, et al. Surface defect classification of steels with a new semi-supervised learning method. Optics and Lasers in Engineering, 2019, 117: 40–48. [doi: 10.1016/j.optlaseng.2019.01.011
    [13] He Y, Song KC, Meng QG, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493–1504. [doi: 10.1109/TIM.2019.2915404
    [14] Lv XM, Duan FJ, Jiang JJ, et al. Deep metallic surface defect detection: The new benchmark and detection network. Sensors, 2020, 20(6): 1562. [doi: 10.3390/s20061562
    [15] 代小红, 陈华江, 朱超平. 一种基于改进Faster RCNN的金属材料工件表面缺陷检测与实现研究. 表面技术, 2020, 49(10): 362–371
    [16] 翁玉尚, 肖金球, 夏禹. 改进Mask R-CNN算法的带钢表面缺陷检测. 计算机工程与应用, 2021, 57(19): 235–242. [doi: 10.3778/j.issn.1002-8331.2010-0446
    [17] 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测. 电子学报, 2020, 48(7): 1284–1292. [doi: 10.3969/j.issn.0372-2112.2020.07.006
    [18] 孙泽强, 陈炳才, 崔晓博, 等. 融合频域注意力机制和解耦头的YOLOv5带钢表面缺陷检测. 计算机应用, 2023, 43(1): 242–249
    [19] Ma NN, Zhang XY, Zheng HT, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 122–138.
    [20] Wang JQ, Chen K, Xu R, et al. CARAFE: Content-aware reassembly of features. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 3007–3016.
    [21] Li HL, Li J, Wei HB, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv:2206.02424, 2022.
    [22] Zhang XY, Zhou XY, Lin MX, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856.
    [23] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [24] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [25] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.
    [26] 马燕婷, 赵红东, 阎超, 等. 改进YOLOv5网络的带钢表面缺陷检测方法. 电子测量与仪器学报, 2022, 36(8): 150–157. [doi: 10.13382/j.jemi.B2205354
    [27] 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测. 图学学报. http://kns.cnki.net/kcms/detail/10.1034.T.20221012.1820.004.html. (2022-10-13).
    [28] 李鑫, 汪诚, 李彬, 等. 改进YOLOv5的钢材表面缺陷检测算法. 空军工程大学学报(自然科学版), 2022, 23(2): 26–33
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张政超.改进YOLOv5的轻量级带钢表面缺陷检测.计算机系统应用,2023,32(6):278-285

Copy
Share
Article Metrics
  • Abstract:767
  • PDF: 2628
  • HTML: 2950
  • Cited by: 0
History
  • Received:December 05,2022
  • Revised:January 06,2023
  • Online: April 20,2023
Article QR Code
You are the first990398Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063