Flash Point Prediction of Aviation Kerosene Based on GRA-IWOA-ELM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of the flash point prediction of constant line aviation kerosene, a soft sensor method based on the grey correlation analysis (GRA) and improved whale optimization algorithm (IWOA) is proposed to optimize the extreme learning machine (ELM). GRA is used to calculate the information correlation degree between each auxiliary variable and the variable to be tested. Auxiliary variables are selected as inputs through the experimental method, and then IWOA is used to find the optimal weight threshold for ELM. In the early stage of the algorithm iteration, the improved Tent chaotic mapping is used to initialize the population to make the population distribution more uniform. The adaptive weight is combined with a random difference variation strategy to improve the optimization ability of the algorithm. The effectiveness of the improved algorithm is verified by eight benchmark test functions, and the improved model is proven to be effective in predicting flash points by the actual flash point data of the constant line aviation kerosene in an atmospheric tower of a refinery.

    Reference
    Related
    Cited by
Get Citation

李奇安,李俊,曹迪,张铭.基于GRA-IWOA-ELM的航空煤油闪点值预测.计算机系统应用,2023,32(8):171-179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 11,2023
  • Revised:February 09,2023
  • Adopted:
  • Online: April 23,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063