Robotic Path Planning Integrating Improved Ant Colony Optimization and Dynamic Q-learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When the basic Q-learning algorithm is applied to path planning, the randomness of action selection makes the early search efficiency of the algorithm low and the planning time-consuming, and even a complete and feasible path cannot be found. Therefore, a path planning algorithm of robots based on improved ant colony optimization (ACO) and dynamic Q-learning fusion is proposed. The pheromone increment mechanism of the elite ant model and sorting ant model is used, and a new pheromone increment updating method is designed to improve the exploration efficiency of robots. The pheromone matrix of the improved ant colony optimization algorithm is used to assign values to the Q table, so as to reduce the ineffective exploration of the robot at the initial stage. In addition, a dynamic selection strategy is designed to improve the convergence speed and the stability of the algorithm. Finally, different simulation experiments are carried out on two-dimensional static grid maps with different obstacle levels. The results show that the proposed method can effectively reduce the number of iterations and optimization time consumption in the optimization process.

    Reference
    Related
    Cited by
Get Citation

薛颂东,余欢.改进蚁群与动态Q学习融合的机器人路径规划.计算机系统应用,2023,32(8):189-197

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2023
  • Revised:February 09,2023
  • Adopted:
  • Online: May 22,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063