Fusion Node Classification Framework Based on Self-attention in Graph Convolutional Networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Graph neural networks (GNNs) have attracted widespread attention due to their powerful modeling capabilities, and they are often used to solve node classification tasks on graphs. At this stage, the commonly used model with the graph convolutional network (GCN) as the core solves such problems. However, due to over-fitting and over-smoothing, the deep node embedding representation effect is not positive. Therefore, this study proposes a graph convolutional neural residual networks (GCNRN) model that combines residual connection and self-attention based on GCN kernel to improve the generalization ability of GCN. At the same time, in order to integrate more in-depth information, this study introduces a fusion mechanism, uses fuzzy integral to fuse multiple classifiers, and finally improves the model testing accuracy. In order to verify the superiority of the proposed method, this study uses ogbn-arxiv and commonly used citation datasets to conduct comparative experiments. Compared with many existing models with GCN as the core, the GCNRN model has an average improvement of node classification accuracy by 2% and avoids the traditional over-fitting and over-smoothing phenomena. In addition, the experimental results show that the multi-classifier model with the fusion module based on fuzzy integral has a better classification effect than the traditional fusion method.

    Reference
    Related
    Cited by
Get Citation

姜发健,王金凤,招奕钧,郑志燊.基于图卷积神经网络的自注意力的融合节点分类框架.计算机系统应用,2023,32(7):251-260

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 02,2023
  • Revised:January 19,2023
  • Adopted:
  • Online: May 24,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063