ECA-based YOLOv5 Underwater Fish Target Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the low accuracy of underwater fish target detection caused by blurred and color-distorted underwater images, complex underwater scenes, and limited target feature extraction ability, this study proposes an improved underwater fish target detection algorithm based on YOLOv5. Firstly, in response to the blurring and color distortion of underwater images, the underwater dark channel prior (UDCP) algorithm is introduced to pre-process the images, which is helpful for correctly identifying the target in different environments. Then, considering the problems of complex underwater scenes and limited target feature extraction ability, the study introduces an efficient correlation channel, i.e., efficient channel attention (ECA), into the YOLOv5 network to enhance the feature extraction ability of the target. Finally, the loss function is improved to enhance the accuracy of the target detection box. Experiments show that the accuracy of the improved YOLOv5 in underwater fish target detection is 2.95% higher than that of the original YOLOv5, and the average detection accuracy (mAP@0.5:0.95) is increased by 5.52%.

    Reference
    Related
    Cited by
Get Citation

曹建荣,庄园,汪明,韩发通,郑学汉,高鹤.基于ECA的YOLOv5水下鱼类目标检测.计算机系统应用,2023,32(6):204-211

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 06,2022
  • Revised:January 06,2023
  • Adopted:
  • Online: April 23,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063