Siamese Network Target Tracking Based on Multiple Branches
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In order to effectively solve the problem of target tracking drift or loss in the face of large-scale deformation, complete occlusion, background interference, and other complex scenes, a multi-branch Siamese network target tracking algorithm (SiamMB) is proposed. First, the method of enhancing the network robustness of adjacent frame branches is used to improve the discrimination ability of target features in the search frame and strengthen the robustness of the model. Secondly, the spatial attention network is fused, and different weights are applied to the features of different spatial positions. In addition, the features that are beneficial to target tracking in spatial positions are emphasized, so as to improve the discriminability of the model. Finally, evaluation is performed on OTB2015 and VOT2018 datasets, and the results show that the tracking accuracy and success rate of SiamMB reach 91.8% and 71.8%, respectively, which makes SiamMB more competitive than the current mainstream tracking algorithms.

    Reference
    [1] 孟琭, 杨旭. 目标跟踪算法综述. 自动化学报, 2019, 15(7): 1244–1260. [doi: 10.16383/j.aas.c180277
    [2] Zhao JG, Cao XY. Research on target tracking algorithm in occlusion scene. Journal of Physics: Conference Series, 2021, 1748(3): 032048. [doi: 10.1088/1742-6596/1748/3/032048
    [3] 程旭, 崔一平, 宋晨, 等. 基于时空注意力机制的目标跟踪算法. 计算机科学, 2021, 48(4): 123–129. [doi: 10.11896/jsjkx.200800164
    [4] 韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述. 计算机学报, 2022, 45(9): 1877–1907. [doi: 10.11897/SP.J.1016.2022.01877
    [5] 章泉源, 王昱程, 陈曦, 等. 基于全卷积孪生网络的模糊目标跟踪. 武汉大学学报(理学版), 2021, 67(5): 411–421. [doi: 10.14188/j.1671-8836.2021.0042
    [6] 陈志良, 石繁槐. 结合双模板融合与孪生网络的鲁棒视觉目标跟踪. 中国图象图形学报, 2022, 27(4): 1191–1203. [doi: 10.11834/jig.200660
    [7] Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters. Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010. 2544–2550.
    [8] Henriques JF, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels. Proceedings of the 12th European Conference on Computer Vision. Florence: Springer, 2012. 702–715.
    [9] Henriques JF, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. [doi: 10.1109/TPAMI.2014.2345390
    [10] Ma C, Huang JB, Yang XK, et al. Robust visual tracking via hierarchical convolutional features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2709–2723. [doi: 10.1109/TPAMI.2018.2865311
    [11] 陈旭, 孟朝晖. 基于深度学习的目标视频跟踪算法综述. 计算机系统应用, 2019, 28(1): 1–9. [doi: 10.15888/j.cnki.csa.006720
    [12] Wang NY, Yeung DY. Learning a deep compact image representation for visual tracking. Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 809–817.
    [13] Tao R, Gavves E, Smeulders AWM. Siamese instance search for tracking. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 1420–1429.
    [14] Bertinetto L, Valmadre J, Henriques JF, et al. Fully-convolutional Siamese networks for object tracking. Proceedings of the 2016 European Conference on Computer Vision. Amsterdam: Springer, 2016. 850–865.
    [15] Li B, Yan JJ, Wu W, et al. High performance visual tracking with Siamese region proposal network. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8971–8980.
    [16] Li B, Wu W, Wang Q, et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 4277–4286.
    [17] Guo DY, Shao YY, Cui Y, et al. Graph attention tracking. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 9538–9547.
    [18] Wang NY, Shi JP, Yeung DY, et al. Understanding and diagnosing visual tracking systems. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 3101–3109.
    [19] 刘嘉敏, 谢文杰, 黄鸿, 等. 基于空间和通道注意力机制的目标跟踪方法. 电子与信息学报, 2021, 43(9): 2569–2576. [doi: 10.11999/JEIT200687
    [20] Wu Y, Lim J, Yang MH. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. [doi: 10.1109/TPAMI.2014.2388226
    [21] Kristan M, Leonardis A, Matas J, et al. The sixth visual object tracking VOT2018 challenge results. Proceedings of the 2018 European Conference on Computer Vision (ECCV) Workshops. Munich: Springer, 2018. 3–53.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

谢斌红,于如潮.基于多支路的孪生网络目标跟踪.计算机系统应用,2023,32(7):163-170

Copy
Share
Article Metrics
  • Abstract:601
  • PDF: 1666
  • HTML: 1249
  • Cited by: 0
History
  • Received:December 07,2022
  • Revised:January 06,2023
  • Online: May 19,2023
Article QR Code
You are the first991216Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063