Label Assignment of Ellipse Gaussian Heatmap for Parathyroid Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Anchor-free-based detection methods have been proposed successively in recent years, and they transform objects into key points and assign labels to positive and negative samples in the global Gaussian heatmap. This label assignment strategy suffers from positive and negative sample imbalance in some scenarios and cannot effectively reflect the shape and orientation of the object in parathyroid detection. Therefore, a new parathyroid detection model, namely, EllipseNet, is proposed in this study, which first constructs an elliptical Gaussian distribution in GT to fit the real object in GT, so as to make the assignment of positive and negative samples more fine-grained. Furthermore, a loss function incorporating the object shape information is proposed to constrain the position of the object, so as to improve the accuracy of detection. In addition, multi-scale prediction is constructed in the model, which can better detect objects of different sizes and solve the problem of target scale imbalance in parathyroid detection. In this study, experiments are conducted on the parathyroid dataset, and the results show that EllipseNet achieves an AP50 of 95%, which is a large improvement in detection accuracy compared with a variety of mainstream detection algorithms.

    Reference
    Related
    Cited by
Get Citation

李宜剑,刘莞玲,陈飞,王波,赵文新.面向甲状旁腺检测的椭圆形高斯热图标签分配.计算机系统应用,2023,32(6):241-250

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 28,2022
  • Revised:December 23,2022
  • Adopted:
  • Online: April 14,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063