Efficient Neural Networks Algorithm Based on Connectivity Properties of Biological Brain Networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Artificial neural networks have been developed and widely applied in computer vision and brain-like intelligence. In the past decades, research on neural networks focuses on higher accuracy rates but neglects the control of network computational costs. The human brain, as an efficient and energy-saving network, plays an important role in the development of artificial intelligence. How to emulate the connectivity properties of biological brain networks and build an ultra-low energy artificial neural network model for achieving essentially the same correct target recognition rate has become a hot research topic. To build an ultra-low artificial neural network model, this study realizes network efficiency by combining the connection properties of brain networks to change the connections of artificial neural networks. The experimental results show that combining the connectivity properties of biological brain networks to change the connections of the networks largely reduces the computational cost of the network, while the performance of the network is not significantly affected.

    Reference
    Related
    Cited by
Get Citation

庞艺伟,于玉国.基于生物脑网络连接特性的高效神经网络算法.计算机系统应用,2023,32(5):196-203

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 15,2022
  • Revised:November 18,2022
  • Adopted:
  • Online: March 24,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063