Fault Diagnosis for Electric Submersible Pump Well Based on Knowledge Graph
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The electric submersible pump well system is an important tool for oilfield exploitation owing to its advantages of large displacement, high head, and flexible operating environment. Reducing the hazards of the faults in the electric submersible pump well system requires the fault components to be quickly and precisely located and repaired. This study proposes a knowledge graph-based fault diagnosis method for electric submersible pump wells. The improved bi-directional long short-term memory-conditional random field (BiLSTM-CRF) entity identification algorithm and the bidirectional encoder representations from transformers (BERT) relation extraction algorithm are used to extract expert knowledge from fault data and then construct a knowledge graph in the field of fault diagnosis of electric submersible pump wells; a Bayesian inference network with fault signs as initial nodes is built with the constructed knowledge graph, and the cause of the fault is inferred by utilizing historical fault data and the calculation method of decoupling conditional probabilities. The proposed method is validated by real fault diagnosis cases.

    Reference
    Related
    Cited by
Get Citation

宫法明,董文吉,袁向兵.基于知识图谱的潜油电泵井故障诊断.计算机系统应用,2023,32(5):87-96

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 20,2022
  • Revised:December 10,2022
  • Adopted:
  • Online: March 24,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063