Personalized Learning Resource Recommendation Based on Knowledge Graph and Graph Embedding
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Faced with numerous online learning resources, learners often suffer from information overload and information disorientation problems. It has become a hotspot to help learners efficiently and accurately obtain suitable learning resources to improve their learning effects. Considering the deficiencies of existing approaches, such as the poor interpretability as well as the limited efficiency and accuracy of recommendation, a new recommendation approach of personalized learning resources is proposed on the basis of knowledge graphs and graph embeddings. In this approach, a knowledge graph of the online learning environment is established through a generic ontology model, and the graph embedding algorithm is applied to train the knowledge graph for optimized efficiency of graph computation in learning resource recommendation. Then, the learners’ interest in learning resources is optimized via clustering based on the learning style features of learners. Finally, the ranked recommendation results of learning resources are obtained. The experiments demonstrate that the proposed approach significantly improves the computational efficiency and the accuracy of personalized learning resource recommendations compared with existing methods in large-scale graph data scenarios.

    Reference
    Related
    Cited by
Get Citation

张栩翔,汤玉祺,赵文,马华,唐文胜.基于知识图谱和图嵌入的个性化学习资源推荐.计算机系统应用,2023,32(5):180-187

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 11,2022
  • Revised:November 14,2022
  • Adopted:
  • Online: February 17,2023
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063