Survey on Intelligent Question Answering System Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the era featuring advanced technology and information explosion, how to accurately extract the required information from massive data has become the study target. As one of the important ways to solve this problem, question-answering systems mainly retrieve and analyze existing data and information and finally return the answer to the question or other related information. In recent years, the revolutionary development of deep learning has brought considerable progress to question-answering systems. Sequence-to-sequence models, end-to-end models, and the recently popular pre-training have left unlimited development space for the question-answering systems, but these systems still face many challenges. This study first briefly introduces the development of the question-answering systems, then classifies these systems from three different perspectives, and expounds on the relevant data sets, evaluation indicators, and mainstream technologies of various question-answering systems. Finally, the study discusses the problems faced by question-answering systems and their future development trends.

    Reference
    Related
    Cited by
Get Citation

姚元杰,龚毅光,刘佳,徐闯,朱栋梁.基于深度学习的智能问答系统综述.计算机系统应用,2023,32(4):1-15

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 26,2022
  • Revised:August 26,2022
  • Adopted:
  • Online: December 23,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063