Improved PSO Algorithm and Its Application in Route Planning of UAV
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the path planning of unmanned aerial vehicles (UAVs), the traditional algorithm has the disadvantages of complex computation and slow convergence, while particle swarm optimization (PSO) features simple principle, strong universality, and comprehensive search, which is mainly used in UAV route planning. As the conventional PSO algorithm is easy to fall into the local optimum, this study integrates the global extreme variation and acceleration terms based on the adaptive parameter optimization to balance the global and local search efficiency and avoid the population falling into “premature”. Through the test of a variety of benchmark functions, the results show that the improved PSO algorithm proposed in this study has faster convergence speed and higher convergence accuracy. In the example verification part, the flight scene features are first extracted, and the environment modeling is carried out based on the UAV performance constraints. Then multiple constraints and the expected minimum flight time are converted into penalty functions. With the minimization of penalty functions as the objective, the route planning model is constructed, and the improved PSO algorithm is adopted to solve the problem. Finally, the effectiveness and practicability of the improved PSO algorithm are verified by comparative simulation.

    Reference
    Related
    Cited by
Get Citation

张姝,汤淼.改进PSO算法及在无人机路径规划中的应用.计算机系统应用,2023,32(3):330-337

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 29,2022
  • Revised:August 26,2022
  • Adopted:
  • Online: December 09,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063