AGV Path Planning Based on Improved A* Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Compared with traditional logistics warehouses, many automated warehouses use automatic guided vehicles (AGVs) instead of workers to sort the goods, which changes the working mode from “man to goods” into “goods to man”. This change not only liberates the labor of workers but also combines the mechanization and automation of automated warehouses, greatly improving working efficiency. Path planning is an important part of AGVs in the process of sorting goods in automatic warehouses. For the path planning of AGVs, the traditional A* algorithm is improved because the paths planned by the traditional A* algorithm are too long and not smooth enough and have large turning angles. In view of the above defects, the method of dynamic weighting and changing the search neighborhood is proposed to improve the traditional A* algorithm, which reduces the search nodes and raises the search speed. At the same time, the path planned by the improved A* algorithm is smoothed by higher-order Bessel curves many times, which lowers the number of turning points. Finally, the comparison of three groups of simulation experiments proves that the improvement proposed in this study is of the reference value.

    Reference
    [1] Wang C, Mao J. Summary of AGV path planning. Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). Xiamen: IEEE, 2019. 332–335.
    [2] 赵连强, 柳国良, 李鹏远. 一种自动规划路径AGV机器人的设计. 科技风, 2021, (32): 7–9. [doi: 10.19392/j.cnki.1671-7341.202132003
    [3] 于佳乔. AGV系统路径规划与任务调度研究[硕士学位论文]. 长春: 长春工业大学, 2021.
    [4] 刘加奇, 王泰华, 董征. 基于改进蚁群算法的移动机器人路径规划. 传感器与微系统, 2022, 41(5): 140–143
    [5] 孙宇翔, 陈浩鹏, 任传荣. 基于精英策略的蚁群算法在AGV路径优化中的应用. 物流工程与管理, 2022, 44(3): 30–32
    [6] 陈靖. 基于人工鱼群和动态窗口法的农用机器人路径规划研究[硕士学位论文]. 合肥: 安徽农业大学, 2020.
    [7] Chen TB, Zhang P, Gao S, et al. Research on the dynamic target distribution path planning in logistics system based on improved artificial potential field method-fish swarm algorithm. Proceedings of 2018 Chinese Control and Decision Conference (CCDC). Shenyang: IEEE, 2018. 4388–4391.
    [8] 张宁, 陈茜茜, 李微, 等. 改进人工鱼群法的机器人路径规划方法. 计算机技术与发展, 2022, 32(4): 210–214
    [9] 陈洋, 赵新刚, 韩建达. 移动机器人3维路径规划方法综述. 机器人, 2010, 32(4): 568–576
    [10] 王翼虎, 王思明. 基于改进粒子群算法的无人机路径规划. 计算机工程与科学, 2020, 42(9): 1690–1696. [doi: 10.3969/j.issn.1007-130X.2020.09.020
    [11] Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256–279. [doi: 10.1109/TEVC.2004.826067
    [12] Wang CB, Wang L, Qin J, et al. Path planning of automated guided vehicles based on improved A-Star algorithm. Proceedings of 2015 IEEE International Conference on Information and Automation. Lijiang: IEEE, 2015. 2071–2076.
    [13] Saian PON. Optimized A-Star algorithm in hexagon-based environment using parallel bidirectional search. Proceedings of the 2016 8th International Conference on Information Technology and Electrical Engineering. Yogyakarta: IEEE, 2016. 1–5.
    [14] 袁薪凯, 晏林冲, 方明辉, 等. 基于A*算法的自动寻路避障小车送餐系统. 科技创新与应用, 2022, 12(14): 35–38
    [15] 陈田田. 基于改进人工势场法的室内移动机器人路径规划研究[硕士学位论文]. 郑州: 郑州大学, 2019.
    [16] Sang HQ, You YS, Sun XJ, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Engineering, 2021, 223: 108709. [doi: 10.1016/j.oceaneng.2021.108709
    [17] Chang ZY, Zhang ZW, Deng Q, et al. Route planning of intelligent bridge cranes based on an improved artificial potential field method. Journal of Intelligent & Fuzzy Systems, 2021, 41(3): 4369–4376
    [18] 张棹轻. 动态障碍物环境下无人艇避碰方法研究[硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2019.
    [19] Ogren P, Leonard NE. A convergent dynamic window approach to obstacle avoidance. IEEE Transactions on Robotics, 2005, 21(2): 188–195. [doi: 10.1109/TRO.2004.838008
    [20] 杨周, 刘海滨. 基于改进蚁群与动态窗口法的AGV动态路径规划. 计算机工程与应用, 2022, 58(6): 287–295. [doi: 10.3778/j.issn.1002-8331.2108-0501
    [21] 林泽南. 基于全局改进势场与局部动态避障的移动机器人路径规划方法研究[硕士学位论文]. 大连: 大连理工大学, 2021.
    [22] 牟德君, 初鹏祥. 基于改进A*算法的仓储环境AGV路径规划. 自动化与仪表, 2022, 37(4): 40–45
    [23] 杨芳清, 刘吉成. 融合改进A*算法与动态窗口法的移动机器人路径规划. 工业控制计算机, 2021, 34(5): 106–108, 112. [doi: 10.3969/j.issn.1001-182X.2021.05.044
    [24] 李印宏. 基于改进蚁群算法的移动机器人路径规划研究[硕士学位论文]. 曲阜: 曲阜师范大学, 2021.
    [25] 付道阔, 范平清. 改进A*算法的三维无人机路径规划. 智能计算机与应用, 2020, 10(12): 155–159. [doi: 10.3969/j.issn.2095-2163.2020.12.034
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈晓冬,王福威.基于改进A*算法的AGV路径规划.计算机系统应用,2023,32(3):180-185

Copy
Share
Article Metrics
  • Abstract:875
  • PDF: 2181
  • HTML: 2862
  • Cited by: 0
History
  • Received:August 17,2022
  • Revised:September 15,2022
  • Online: December 02,2022
Article QR Code
You are the first990425Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063